

Piezo-Thermo-Mechanical FEM analysis applied to vibrating inertial microsensors

This document is the property of OPEN Engineering S.A.

Inertial microsensors at ONERA

2 kinds of inertial microsensors Accelerometers VIA & DIVA Rate gyro VIG

Application

Inertial Measurement Unit

- □ 3 accelerometers
- □ 3 gyros

Piezoelectricity

Thermal stability

Quartz Wafer (1,5x1,5 inch2) within 16 VIA accelerometers

VIA Accelerometer

Quartz Wafer (1,5x1,5 inch²) within 9 VIG Gyros

VIG Gyro

High-Q resonators

Oscillator accuracy
 High Q-factors required

 $\Delta F = \frac{F}{2.Q} \Delta \varphi$

Energy dissipation
 Gas damping (neglected)

- □ Vacuum (10⁻² mbar)
- Thermoelastic damping
- **Clamp losses**

$$Q = 2\pi \cdot \frac{W_{stock\acute{e}}}{W_{dissip\acute{e}}} \quad \Longrightarrow \frac{1}{Q} = \frac{1}{Q_i} + \frac{1}{Q_s} + \frac{1}{Q_d}$$

FEM Analysis

Multiphysic approach required

Multiphysic FEM

Needs

Mechanical behavior Anisotropic material 3D structure Quality Factor prediction Thermoelastic damping Resonator behavior Electrical parameters Piezoelectric coupling Sensor Scale factor

■ Piezo-thermo-elastic FEM

OOFELIE (Open Engineering)
 Samcef Field (Samtech)

 $\begin{cases} T_i = C_{ij}^E (S_j - \alpha_i \theta) - e_{ki}^t E_k \\ D_i = \varepsilon_{ij}^S E_j + e_{ijk} S_{jk} + p_i \theta \\ \sigma = (C_{ij}^E \alpha_i)^t S_i + p_i^t E_i + \frac{C_P}{T_0} \theta \end{cases}$

 $\rho \frac{\partial^2 u_i}{\partial t^2} = \frac{\partial T_{ik}}{\partial x_k} + f$ $\frac{\partial D_i}{\partial x_i} = \rho_e$ $\left| (T_0 + \theta)\dot{\sigma} = \lambda \Delta \theta + u_{th} \right|$

Thermoelastic Damping

Bending mode

- □ Compression -> heating
- □ Extension -> cooling

Irreversible heat flow

- Energy dissipation
- Damping

Limitation of analytical model

- □ Anisotropic material
- **Complex 3D structure**

$$= \frac{\rho \cdot \mathbf{C}}{\alpha^2 \cdot \mathbf{T} \cdot \mathbf{E}} \cdot \frac{\mathbf{F}_{o}^2 + \mathbf{F}^2}{\mathbf{F}_{o}\mathbf{F}} \text{ avec } \mathbf{F}_{o} = \frac{\pi \cdot \mathbf{D}}{2 \cdot \mathbf{e}^2}$$

Modeling using Oofelie

- □ Harmonic response analysis
- Influence of piezoelectricity
- Good agreement with experimental results

	Q factor
Zener theory	16 580
Oofelie : thermo-elastic	13 700
Oofelie : piezo-thermo-elastic	13 090
Experimental characterisation	~13 000

S. Lepage et al., CANEUS 2006, Toulouse, France

Insulating Frame

- Limit energy losses through mounting parts
- **Preserve resonance quality**
- Protect resonance frequency from thermal stresses

FEM Analysis

□ Model quartz structure + TO8 base

This document is the property of OPEN Engineering S.A.

Insulating Frame

Prediction of the frame efficiency
 Modal Analysis
 Evaluation of the strain energy dissipated in the base

Less than 10⁻⁸ of total vibrating energy in mounting parts

Q_{decoupling} > 10⁸
 Compatible with thermoelastic damping
 (Q_{th} =13000)

Scale Factor Estimation

- □ Stress generated by static acceleration
- □ Modal analysis with static pre-stress
- **Evaluation of the frequency shift due to acceleration**

Electric behavior (1/2)

Electric behavior (2/2)

Influence of external electric impedance

Inter electrode capacitance cancellation

□Impact of the electronic circuit on the transducer behavior

- Phase shift cancelled
- □ Same quality factor

Better response of the transduce

deg

DIVA : Lock-in phenomena

Lock-in

- Mechanical coupling between resonators
- **Game resonance frequencies**
- **Blind zone**

□Specific optimization by FEM

- **Decoupling frame optimization**
- Reduce vibrating energy transfer between resonators

Reduction of the blind zone to 1 mg

Gyro VIG

Coriolis Vibrating Gyro

- Sensitive element: tuning fork
 - 500 μm * 500 μm * 2 mm
- Driving mode : in-plane bending resonance (~ 35 kHz)
- Sensing mode : orthogonal bending mode induced by coriolis acceleration
- Angular rate measured by the amplitude of the sensing mode

Excitation

Piezoelectric excitation by electrodes on the stem

Detection

Electrical charges collected on each blade

Coriolis Acceleration

Driving mode excitation by piezoelectricity

Complex modal analysis

Harmonic response analysis

- □ Electric potentiel : 1V
- □ Frequency : # 35 kHz
- \Box Driving amplitude : ~ 1 μ m

Orthogonal vibration due to Coriolis acceleration

- □ Angular rate : 10 °/s
- Sensing amplitude : 0.2 nm

Driving mode

Coriolis coupling

Design Analysis

Evaluation of total electrical charges
 Capacitive coupling

Influence of dissymmetry due to technological processing

- Electrodes misalignment
- Anisotropic chemical etching
- Electrodes optimization

Better understanding of the transducer behavior

Electrode design

Electrode optimization

- Piezoelectric modal analysis
- Electric charge evaluation
- Electrode efficiency
 - Mode pilote
 - Mode Détecteur
- $\hfill\square$ Optimization of R_m for each mode

Scale factor

- Harmonic analysis with rotation speed
- Numeric Scale factor: 1.3 10⁻¹⁶ C / (°/s)
- Experimental scale factor: 1.6 10⁻¹⁶ C / (%s)
- Good agreement

This document is the property of OPEN Engineering S.A.

Conclusion

□ FEM analysis for inertial micro-sensors with Oofelie

Multiphysic approach

- Mechanical
- Electrical
- Thermal

Prediction of the main sensor characteristics

- Quality factor (Thermo-elastic damping)
- Accelerometer scale factor (Pre-stress analysis)
- Gyro scale factor (Coriolis coupling)
- Electric parameters

□ Good agreement between numeric and experimental results

Development of accurate inertial microsensors

□ Investigation on new materials (GaPO₄) and new designs